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PRUNED ERROR-TRELLIS DECODING

OF CERTAIN NON-SYSTEMATIC CONVOLUTIONAL CODES

I. S. Reed

I. INTRODUCTION

The previous works on syndrome decoding of convolutional codes (CCs),

e.g., see Ref. 1, led to what is called error-trellis decoding [2]. Since

the ending of the previous NAVAIR contract (Contract Number NOOO19-83-C-

0075) in March 1984 and the beginning of the present contract, considerable

progress has been made in the concept of error-trellis decoding. It was

found, using the fact that CCs are capable of correcting only t errors in

some multiple of the constraint length, that the new algorithm requires

generally only a reduced or "pruned" trellis. In other words, it was shown

that the finite error-correcting capability of the CC makes possible a prun-

ing of sometimes a substantial number of states or paths in a constraint

length of the error trellis.

Quantitative formulas for the extent of the primary process for all

systematic CCs and certain non-systematic CCs were found recently [3] in

collaboration with J. M. Jensen, a visiting scholar at the University of

, Southern California. In this report, the underlying theory and derivation

of these results are given and applied to the special case, the dual-K CCs.

The non-systematic dual-K CCs were first introduced by Viterbi and Oden-

*'-. walder [4]. Such a code is non-binary and, for some applications, a possi-

ble substitute for a Reed-Solomon block code.

It will be shown that a CC with a pruned error trellis can be decoded

using a modificaten of either the Viterbi or sequential decoding algorithm

.- r

................................................................-.. .
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with often a significant reduction in complexity. It is expected that de-

coding with a pruned error trellis may make it possible to decode CCs--and, L

in particular, the high-rate CCs--with a larger error-correcting capability

than heretofore considered practical.

In order that this report may stand alone, the properties of the CCs

required in the report are reviewed briefly in this introductory section.

In Section II, the general techniques developed previously [2] for error-

trellis decoding are summarized and a set, E, of error sequences which can

be decoded by error-trellis decoding is defined. In Section III, a speci-

fic procedure is found for pruning the error trellis of a certain class of

non-systematic CCs, which includes all systematic CCs and the dual-K CC.

Formulas for the number of resulting states and transitions after pruning

are found for any CC with free distance, dfree, of this sub-class of CCs.

The results are applied to the dual-K CC in Section IV.

Let the information or message sequence, the input to the CC, be repre-

sented by

x(D) xl()P ... , xK(D)] (la)

where

x.(D) x j D (ib)
j=O

for 1:5 j 5 k are elements in F[D], the ring of polynomials in the unit de-

lay operator D over F = GF(q), a Galois field, with q a power of a prime
13

integer. Vector x(D) is a generating function in D of the input message

sqenex = . r - _ x is a vector OeP

belonging to V tek-dimensional vco pc vrF Di oeieL( seune- F)' , .],weex xp..xk oeie
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called a D-transform of the message or information sequence x. The k com-

ponent vector xj in x is called the information frame at stage or frame

time j.

In a similar manner, the output sequence is

y(D) [y,(D)s ... 9Y(D)l, (2)

where yi(D)E F[D]. Vector y(D) is the D-transform of output coded sequence

Y= [yO0 ""' Yj' ... ], where = Y In , Yjk] belongs to Vn(F). The

n-vector is called the j-th codeword frame of code sequence y.

The information and code sequences of an (n, k) convolutional code

are linearly related by a k x n, rank k, generator matrix G(D) of polynomial

elements in F[D], as follows:

y(D) = x(D) G(D) . (3)

The maximum degree m of the polynomial elements of G(D) in D is called the

memory, and the constraint length L is defined as L = m + 1.

The free distance of a CC is defined by

mi n

dfree = (D) # 0

where WH(y(D)) is the cumulative Mamming weight of the coefficients yj of

DJ for all j, 0 5 j, where Yj is the j-th codeword frame. Note that the

computation of dfree requires at least L codeword frames for all codes of

practical interest.

To avoid catastrophic error propagation, G(D) is assumed to be a basic

encoder [5]. The Smith normal form of a basic encoder [2] is

G(D) = A(D) [Ik 0] B(D) , (5)

0k
lie° .
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where A(D) and B(D) are, respectively, k x k and n x n invertible matrices

over F[D] and Ik is a k x k identity matrix.

In Eq. (4), let matrix B[D] be partitioned as

B(D) [ (), B2 (D)]

where BI(D consists of the first k rows of B(D) and "T" denotes matrix trans-
pose. Similarly, let -

where ,(D) consists of the firs[ k colum of B(D)1. Since B(D) B(D)-l

in, the following identities evidently hold:
BI(D) B (D) I BI(D) B2(D) 0

(6)
B2(D) *B 1(D) = 0 B2(D ) • B2 (D) = In-k

A parity-check matrix H(D) is an (n - k) x n matrix of rank (n - k)

satisfying

G(D) HT(D) =0 . (7)

From Eqs. (5), (6), and (7), it is seen next that

H(D)= B(D)T (8)

has the properties of a parity-check matrix H(D) associated with G(D).

By Eq. (3), the CC generated by G(D) is the set

C: {.y(D) [yo(D), .,(D)] y(D) x(D) G(D). (9)

It is now shown also that

I = {y(O) = [YP , ... , Yn(D)] y(D) HT(D)= 0 1, (10)

"0. .

" '.° .

,° . :",
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where H(D) is given in Eq. (8). To see this, denote the right side of

Eq. (10) by CH. Clearly, an element of C, as given in Eq. (9), belongs to

CH, and hence CC CH.

Next, suppose y_,(D) is an element of CH, i.e., by Eqs. (8) and (10),

(I) H T(D) = (o)) 2(D)- o

But, by definition, B2(D)consists of the last (n - k) columns of B(D)

so that

- -I [0 I  .(11) .
- _ (L ) ( )

~In-k

where "0" denotes a block of k rows of zeros and I is the (n row

zers ad n-k i h n-k o

identity matrix. Thus, yi(D) satisfies the equation

yl(D) B-(D) 0

The most general solution of this equation for yl(D)-(D) is

y 1(D) B (D) r [(D), ..., r(), 0, ... , 0] [T(D), 0]

where rj(D) for 1 S j !5 k can be chosen to be any arbitrary elements of F[D].

Solving for yl(D) yields, finally, by Eq. (5),

0l(D) = (D) [kl, 0] B(D) _(D) A-('D) G()

which belongs to C, as given in Eq. (9). Thus, CHC C and Eq. (10) is

proved.

The fact that the CC given by set C in Eq. (9) can be characterized

Ly Eq. (10) is used in the following section to find the coset of solutions
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to the syndrome equation. It is also used to find another representation

of this coset needed in error-trellis decoding.

II. ERROR-TRELLIS DECODING

Let y(D) in Eq. (3) be transmitted and z(D) be received. Then,

z(D) = y(D) + e(D) , (12)

where e(D) is the D-transform of the error sequence. By Eqs. (12) and (7),

the syndrome of the received sequence is

s(D) = z(D) * HT(D)= [yCD) + e(D)] HT(D) (13) J
= e(D) - HT(D)

The problem of syndrome decoding is, given s(D) = z(D) • HT(D), to

1 -470 solve the syndrome equation

s(D) =z(D) HT(D) =e(D) HT(D) , (14a) ]
or its equivalent,

(,(D) - z(D))HT(D) 0 (14b)

for all solutions e(D).

By Eqs. (10) and (9), the term (e(D) - z(D)) in Eq. (14b) must be some

code sequence v(D) G(D). Hence, the most general solution of the syndrome

equation, Eq. (14a), is

e(D) = z(D) + v(D) G(D) , (15)

where v(D) is the D-transform of an arbitary message-like sequence v =

[Vo ...,vj ... ] of k-vectors vjE Vk (F).

Equation (15) shows that the most general solution of the syndrome

equation, Eq. (14a), for e(D) is the coset

• ..... . .. . -., . -. . .. -.- - - .- ..- . - , '..-- ,..W...,- - . .*. . .. . .- - -. . -. - '.
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Cz = {e(D) = z(D) + v(D) G(D) v(D) = Vl(D) , ... , vk(D)]} (16)

of code C, defined by either Eq. (9) or Eq. (10). A minimization of the

Hamming weights over all elements of coset C yields the standard minimum-

error solution for message v(D). Efficient methods for achieving this

minimization include the Viterbi algorithm and all sequential decoding

methods for convolutional codes.

The difficulty with the standard decoding methods of CCs, i.e., Viterbi

or sequential decoding, is the need to consider a sometimes prohibitively

large number of states and paths in the decoding trellis. Such minimum-

weight, path-finding decoding methods do not take advantage of the limited

error-correcting capability which one might expect could reduce the number

of paths in the trellis over which this minimum is taken. One method which

allows for such a reduction in the number of paths in the trellis is to use

another equivalent solution of the syndrome equation, Eq. (14), which is

independent of the transmitted codeword.

Another solution of Eq. (14) is given by

e(D) = u(D) G(D) + z(D) R(D) , (17a)

where

R(D) B F()B(D) (1 7b)

is an n x n matrix of rank (n - k) and where matrices B2(D), B2(D) are de- j
fined in Eq. (6). To prove Eq. (17) is a general solution of the syndrome

equation, note, by Eqs. (17b) and (6), that

(z(D)- z(D) R(D)) HT z(D) 12(D) -_z(D) '2(D) B2(D) B2(D) I
=z(D) B2 (D)- z(D) B2(D)In-k= 0 .

In-o-0
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Hence, by Eq. (10), z(D) - z(D) R(D) is a possible codeword, say

x1(D) G(D), wherejl(D) is some k-vector of elements in F[D]. That is,

z(D) - z(D) R(D) = xl(D) G(D)

or

z(D) = (D) G(D) + z(D) R(D)

for some information vector x1 (D). A substitution of z(D) in the above

equation into Eq. (15) yields

e=(xl1(D) + v(D))G(D) + z(D) R(D)

= u(D) G(D) + z(D) R(D)

as another general solution of the syndrome equation, where u(D) is an arbi-

trary k-vector of elements in F[D]. Hence, Eq. (17) is established.

The solution, Eq. (17), of the syndrome equation, Eq. (15), has the

desirable property that it is independent of the transmitted codeword Y(D).

To see this, let ea(D) replace e(D) in Eq. (17) as the actual error sequence.

Then, a substitution of Eq. (12) into Eq. (17) yields, by Eq. (10),

e(D) = u(D) G(D) + (y(D) +ea(D)) HT(D) B2(D)

= u(D) G(D) +ea(D) R(D)

which is independent of the transmitted message y(D).

By the maximum likelihood principle, the most likely error sequence

6(D) is the one with minimum Hamming weight. That is,

WH (D)) =mi WH u (D ) G(D) + z(D) R(D) (18a)
wh(D)

with

.. ~ . . .-. -.. ... ..- _ .. - .- - - .,,. . - . .... -i L. . . . .... - . - . . .:. .. .-- .-.....
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6(D) = 6(D) G(D) + z(D) R(D) , (18b)

where the minimization is taken over all k-vectors u(D) over F[D] and O(D)

is some k-vector which achieves this minimization.

It is seen, from Eq. (17), that all possible error sequences are ob-

tained by adding the sequence z(D) R(D) to the code tree or trellis C in

Eq. (9), presented graphically. This new trellis is called an error trellis.

Thus, the most likely error sequence (D) in Eq. (18) equals also the mini-

mum weight path in the error trellis. Hence, by Eq. (12), a subtraction of

(D) from z(D) produces the best estimate j(D) : (D) - z(D) of the original

transmitted codeword y(D). Therefore, the best estimate i(D) of the original

information sequence x(D) is

i(D) = j(D) G(D) -

= [z(D) - a(D) G(D) z(D) R(D)] G(D) -I  (19)

= Z(D) G(DY -l 6(D)

The last inequality follows, using Eqs. (5), (17b), and (6), from

R() (D B 2 (D) 82(0) B1 (D) [ A A(D)

100

= -B (D) B (D) [-B (D), 82(D)] A-1]IA(D)

= B2(D) [0, Ik] [1k] A-(D) = 0 " ]
- This important identity shows that 6(D), obtained in the minimization in

Eq. (18), is the "best" correction factor for the received information
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sequence, z(D) G'l(D).

Again, let ea(D) be the actual error sequence. Then, a substitution

of z(D) : y(D) + ea(D) into Eq. (19) yields

i(D) : [j(D) +_ea(D)] G-I(D) -_u(D)

(20)

x(D) + ea(D) G-I(D) - 6(D)

where x(D) is the original information or message sequence in Eq. (1).

Now , define E to be the set of all error sequences which can be

corrected by Viterbi or error-trellis decoding, as in Eq. (18). Then, by

Eq. (20), if ea(D) E E, the estimate (D) found by the minimization in

Eq. (18) equalsea(D) , so that 6(D) = ea(D ) G-I(D). Thus, the minimization

in Eq. (18) needs only be taken over those sequences u(D) which belong to

the set
~(-i)

(-1 {u(D) =e(D) G"(D) et(D) e E. (21)

Hence, the most likely error sequence e(D) is found by

min i

WH (!(D)) :u(D)E(_I ) WH(U(D) G(D) + z(D) R(D)) (22a)

with

;(O) 6 (D) G(D) + z(D) R(D) , (22b)

where E(-I ) is the set of k-vectors, defined in Eq. (21).

Note that, if ea (D) e E, then the most likely sequence found by Eq. (22)

is equal toea(D), the actual error sequence. If ea ( D) j E, a decoding error

will be made in both Eq. (18) and Eq. (22).

In order to actually perform the minimization in Eq. (22) over the set

E(-l ) the sets E and E(-l ) must be identified. This is generally impossible.

" " " i i -!.> ." - ..>i :. -" " " -" " -- " -' -" " ' .-".' " I
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* However, as will be shown in the following section for a certain restricted

class of non-systematic CCs, a reasonable approximation to sets E and E
(-l )

can be found.

III. ERROR-TRELLIS DECODING OF CERTAIN NON-SYSTEMATIC CCs

To find a reasonable approximation to E(-l ) in Eqs. (21) and (22), the

set in which the most likely sequence 6(D) can be found for message correc-

tion, consider first the error trellis in more detail. By Eq. (17), the

error trellis is a coding trellis generated by the term u(D) G(D) plus

the term z(D) R(D) - which depends on the received coded sequence.

Thus, the underlying coding trellis of the error trellis is

w(D) = e(D) - z(D) R(D) = u(D) G(D)

which can be conceived to be a linear sequential circuit with input uj at

frame j, where uj = [Ujl, ... , Uj is the j-th, k-vector, coefficient of

the formal power series for u(D)-, i.e.

00

u(D) =D

j=0

By expanding u(D), G(D), and W(D) into their formal power series and equat-

ing coefficients,

: F uj j l " ' j-m)' (23)

for j 0 is the output of the coding trellis at frame j in terms of input

and the m previous values of ij, where initially u!j =0 for all j< 0.

Evidently, function F is linear in each of its k-vector components so that

W 0, the zero n-vector.

0°
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where

GO=[I, l,, ... , l] and

1 [g11, g 12, 91 n]

with gli O and glj E GF(2K) for 1 : 1, 2, ..., n).

From the above definition of a dual-K CC, the minimum distance of the

code is d : 2n. Evidently also, the free distance is

dfree = d = 2n.

Hence, if no more than t symbol errors occur in the first two codeword

frames, and

2t + 1 : d : 2n or

t < n - 1/2

* then those errors which occur in the first frame can be corrected. In other

words, the dual-K CC is a t-error-per-constraint length-correcting CC, where

t = [n - 1/2].

Consider now the example given by Odenwalter [4, Fig. 1].

Example: Although he does not say so explicitly, Odenwalder uses the
Galois field GF(23)generated by the polynomial x3  + x2 + ', irreducible

over GF(23). If a is a root of this polynomial, then a, a2 ' a 3 , a, a5

a6, 7 : 1, and 0 are the eight elements of GF(2 3). The representation of

the elements as polynomials in a is given in Table 1.

The convolutional encoder of a rate 1/2, dual-3, CC is shown in Fig. 1.

This is a more abstract version of the same encoder given by Odenwalter

[4, Fig. 1].
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'.[ Ik ,  - Q(D)• B(D)-I
0 , n- k _

and, as a consequence, G(D)-1 is delay free and of form, Eq. (47), so that

8= 1.

The number of states and transitions derived above in theorem 2 can be

shown to be polynomial in mk. In fact, if mk >> t, then it can be proved

that

S(q, k, m, et) [(q- e mk/6t]6t

and

T(q, k, m, et) [(q- 1) e (m + 1) k/edtt

are the number of states and transitions per frame time required for error

trellis decoding of a systematic CC. For standard Viterbi decoding, these

numbers are exponential of form qmk and q ,(m+l)k respectively. These re-

sults show that the efficiency of errc,-trellis decoding improves dramati-

cally both with increased rate and mk over standard Viterbi decoding.

IV. PRUNED ERROR-TRELLIS DECODING OF DUAL-K CONVOLUTIONAL CODES

Dual-K convolutional codes are (n, 1) CCs of rate 1/n, of memory m = 1,

and with symbols in the finite or Galois field GF(2K). See Odenwalder's

paper [4]. The generating matrix G is

G G1
G0 G1

G 0 G I

- GO  G1

0 1
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Theorem 2 shows that non-systematic (n, k) CCs with delay-free inverse

generating matrices allow for the possibility of trellis pruning. In gene-

ral, the smallest reduction factor is obtained for such codes with 8- 1 or

inverse matrices of form

I

-k+l-

G-  (47a)

where

0 W H 1, for k + 1 5 i _ n • (47b)

Three classes of codes achieve 8 = 1 for greatest error trellis pruning.

They are:

(i) All (n, k) systematic CCs.

(ii) All (n, 1) non-systematic CCs with delay-free inverse matrices.

(iii) All (n, k) non-systematic CCs with delay free inverse matrices,

where Eq. (47) is true.

All other CCs with a delay-free inverse generating matrix require 1 < 8 < k.

To show (i), above, observe that all (n, k) systematic CCs have a generating

matrix of form G(D)= [Ik' Q(D)], and, as a consequence, a Smith normal form,

G(D) = [k , 0] B(D), where

B(D) = [ Q 1
0 , Ink

Hence, G(D)1  B(D)1l [1. T =[k ]T, ic
k9 = 1 k, , since
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states S. need to remain in the error trellis which have Hamming weight of

at most 8t. Since there are exactly q-l) j states Si of weight j

for 0 5 j s min (8t, m k), where )denotes the binomial coefficient, the

first part of the theorem is proved.

Consider now the "change of state" equation, Eq. (25b), of the coding

trellis, associated with the error trellis in Eq. (17). By Eqs. (25b),

(28), and (30), a transition in the error trellis from state

at frame j yields, upon input j, the next state,

S j+I 11" I "'ml

where a' = u. is the value of the input uj at frame j. Thus, the transition

is determined uniquely by input a-' and state (aI' " '-m) or by the (m + l)-
tupl e,

But, by Eq. (26), this (m + l)-tuple or its equivalent, the transition, is

equal to (m + 1) = L consecutive frames of the sequence u(D), namely,

... ...,j, !! I ~ -
where =: 0 for j < 0. As in the first part of the theorem, only those

-1
sequences which are in - need to be considered. Therefore, a branch-m,e

ing or transition from state Sj = (5, .. m) to state Sj+1 ( ' a,

"'m-l) needs to be in the error trellis if and only if WH(L', ..1 .

m) :s t. Hence, the total number of transitions at frame j is given by

Eq. (46) for j > m, and the theorem is proved.
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If a probability measure were imposed on the set of all possible error

sequences, it is probable that set El would approximate E very closely in

probability. Hence, for such cases, the performance of a Viterbi decoder to

realize Eq. (44) would differ very little from the hypothesized generalized

feedback decoder.

Realizing Eq. (44) with a Viterbi-like or sequential decoder has the

advantage over standard Viterbi or sequential decoding in that it allows for

a reduction of both the number of states and transitions in the error trellis.

The following theorem quantifies the reductions achieved in the "pruned"

trellis. The techniques for pruning the trellis are given in the proofs of

the theorem.

Theorem 2. The number of states in the pruned error trellis of a q-ary

(n, k) CC with memory m and a delay-free G- is

S(q, k, m, et) = 2 (q-l)j (45)
j=O (

where a = min (et, m k) and t = [(dfree - 1)/21. Also, for the same CC, the

number of transitions in the pruned error trellis is

J9 (m+) k)
T(q, k, m, et) = L ( (q-l) j  (46)

j=0 /

where 13 minlet, (m + 1) k].

Proof: The minimization in Eq. (44) for error-trellis decoding is

taken only over those sequences u(D) which belong to That is, by

Eq. (40), the minimization is taken only over those sequences u(D) which

- have Hamming weight of, at most, et in every L = m + 1 consecutive frames,

i.e., WH(u .... ' +m)< et for all j 0. Hence, by Eq. (30), only those

. . .
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For the other part, assume u(D) e Mlm () _

[R(D), 0, ... , 01 But this implies that

v(D) G1 = [u(D), 0, ... , [ =u(D)E .

Hence, (-l)c In (-) and the theorem is proved.

Assume for the moment that the minimization in Eq. (22) is accomplished

by generalized feedback decoding, then, by Eqs. (22) and (35), the most

likely error sequence is found by

WH(e(D)) u min WH(H(D) G(D) + z(D) R(D)) (43a)
u(D) e

with

e(D) = u(D) G(D) + z(D) R(D) . (43b)

But, in Eq. (43a), the same estimate of e(D) is obtained if the minimization

is taken over any set which includes : (-1). Hence, since IJ-1  .m-1  by

-I it is sufficient to take the minimization inEq. (37), and XmI mO''
m - m,e

Eq. (43a) only over -l* Thus, the minimum error sequence 6(D) in Eq.Eq.(43) nlyove Tm, 0e ,

(43a) can be found, for all convolutional codes for which G-1 (D) is delay

free, by

min
WH (6(D)) = D)-l W H1u(D) G(D) + z(D) R(D (44a)

m,e

with

S(D) 6 (D) G(D) + z(O) R(D) , (44b)

where tj(D) is a "best" message correction factor.
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" !!j +m WH[ -" .m

[V k+l k+1' Vj+m,k+l "Pk+l]

S WV( 
n )n) "v j+m,n )n +1

W (k)( J .v) k. + Wv )_ "_ ( k) --j + WH (jk+l [ -k+l + " ." WHj+mk+l +-k

+ WH(nV [.n-En + "-+ W H(vj 4mn)

)WH[v.v (k) .(k)
H (K V(k)) + WH( k+l) WHj,k+l + + WH j+m,k+l

_<WH ~ ~ , ., W WHi Wjkl ""

+ WH(Vj,n)+ ... + WH(vjn)I ,  (42)

where e is given in Eq. (41). After assembling these components of vectors

vj, ... , vj m within the Hammning weight function, this inequality becomes,..'
fi na l y,n,"k

WH(Uj' ""'U + eWH(Vj , '-' H Vj+m)

where the last inequality follows, from Eq. (33). Hence, by Eq. (40),

im(- ) £ EmO(l) and the first part of the theorem is proved.

•0 ... '-. .' ./ .. :.,. . -. ,-;- - .- - .-.- . . . - . .. . . .. . . . .-. . . . . . . .
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00

u(D) = Dj = v(D) G 1

j =0

00

S2 (- G-) G D•

j=0

Thus, using Eq. (39) in lemma,

WH(Uj ,  , Uj+m)= WH( , K.., j+m G-

n nW (k) + P.9 () +
= WH + ji , ... , ( + Vj+mi --i '

i =k+l i =k+l

where v(k) = (vjl ' ... , V This can re-expressed as

WH(Uj, .. , Uj+m) = WH( k).(k)

H [v(,k+1 ._k.!!j H !~,,+l ._ +1 ]

+

+ [v ,n .. vj+m,n ± n])

But, since the Hamming weight of a sum of vectors is upper-bounded by the

, Hamming weight of the concatenation of the same set of vectors, one has

S.°
Fl °

°r.
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fP k where Ik is the k x k identity matrix and P is an (n - k) x k matrix

of elements in GF(q).

By the above lemma, there is no loss in generality to assume that G

has the form

1k

-k+l

G ,"(39)

wherePP P for kP+k1fork il:5 n.

Now define a message-correction cylinder by

. ... -1) -{u(O)

m,6 t (40)

['- uI(D), .m< et for al I > 0,
.. :. Uk(D), ... , a

where

maxmax tWH (P ) l 1. (41)

k+l s i < n

Evidently, 1 e 6 k. The following theorem now relates Im(-1) with cylin-m

der rm1 (-_ and a,-ad

Theore (-) where cylinder I and m, -

for 1 < 8! k are defined in Eqs. (36) and (40), respectively.T-m(-I O(-1)supsu()=vDG "

Proof: First, to show I) m , suppose -(D) v(D) G

M P where v(D) e Im. Then, since G"I is delay free,

!h .



-16-

'.-j '!j-l' "". Uj-m" Remember, by Eq. (36), that u(D) = v(D) G-(D). Thus,

in the special case that G-1 (D) is delay-free of form

G-= = [g " gik] (38)

where G e GF(q), one has

n
S= vii 'i

i =1

so that the k-vectors ii are linear functions of the components ofyv fori3

' = 0, 1, ... , n). Hence, a CC for which G-1 is delay-free has the property

that the states of the error trellis are dependent only on m + I successive

Iframes, Kj,v Kj-l, ""' , of error vectors. Therefore, in this case, by

Eq. (33), one needs only consider the error cylinder I and its correspondent
m

Xmn'l) when endeavoring to prune states from the error trellis.

Assume now that G-1 is delay-free, and that G-1 is an n x k matrix over

GF(q). Since a code sequence y(D) = [yl(D), ..., Yn(D)] has the same dis-

tance properties as a code y'(D) =4y1'(), y n I(D)I where y'(D)

(D), where 7r(j) denotes a permutation of the integers n) = , ... ,

it is natural to call code z'(D) permutation equivalent to y(D).

Definition 1. Two codes are permutation equivalent if one can be

obtained from the other by the same permutation of places or coordinates

in all frames. The following lemma can be established for permutation

equivalent CCs.

Lemma: Let Cl be a CC with a delay-free inverse G-1. Then C is

permutation equivalent to a code C2 with a delay-free inverse of form

-.. . . .. : t..
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However, suppose the error trellis or its equivalent, a Viterbi de-

coder, is restricted to be a generalized feedback decoder wherein the

correction of the t-th frame is decision dependent on only the x-th and

the preceding J frames of data, namely (z, ..., z.j) for (i = 0, 1, ...).

Then, by construction, such a generalized feedback decoder has the property

that it will correct any error sequence belonging to . Hence, if set

E is defined to be the set of all error'sequences which can be corrected

by a generalized feedback decoder, using error trellis decoding or its equiva-

lent, Viterbi decoding, with correction delayed by J frames, then

sE. (35)

Evidentl', set E is a reasonable approximation to set E.

The restriction of set E to its approximation El makes it possible, by

the definition of a state in Eq. (30), to often reduce the number of states

as well as transitions needed for the error trellis. To show this, define

first, by analogy with set E(-l) in Eq. (21), the sets

j {u(D) v(D) G-I(D) v(D) eEj (36)

corresponding to E. in Eq. (33) for 0 S j 5 J. These sets, associated with

the cylinders Z., also form a family of non-increasing sets, i.e.,

m(- l (-) (l) -l) (37)

To prove this, suppose u(D) e r(rl), where m <j <_ r< J. Then, by
Eqs (3) ad (4),u(D = (D) G-I(D), where v(D)( e I c j for m S j :5 r.rrEqs. (36) and (34), u(D)=v()G()whr ()E r .fom j r

Hence, by Eq. (36), u(D) e Ij(-1) so that 1. 1 and Eq. (37) is estab-

lished.

By Eq. (30), the state of the error trellis depends only on one con-

straint length or L = m + 1 successive values of uj, namely,

0

.. . . . . ..
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For most codes of practical interest, J _ m.

Assume, as in Eq. (12), that e(D) is a possible error sequence and

define

X t{(D) IWH (tz e.. X t for all x_! (33)

where t= [(dfree - 1)/2] and [a] denote the largest integer less than orfree

equal to a. Sets X. for (j = m, m + 1, ,.., J) constitute a family of non-

increasing sets, i.e.,

Zm2Zm+2 _... (34)

The smallest set is the analogue of the classical error-correcting sphere

in block codes. However, since the elements of are infinite sequences,

it is perhaps better to call I an error-correction cylinder rather than

sphere. In fact, a set ., as defined in Eq. (33), is precisely the infinite

intersection of what usually are called cylinder sets of form

C= {e(D) WH( e , ... , e+j) t}

for (k = 0, 1, 2, ... ).

For a linear block code, the set of all error vectors which are correct-

able unambiguously by minimum distance decoding is equal to the error-

correction sphere. As a consequence, one might suspect by analogy for con-

volutional codes that E, the set of all error error sequences which can be

corrected by error-trellis decoding in Eq. (22) or its equivalent, Viterbi

decoding, would equal -. However, the methods of Viterbi or sequential

decoding require the processing of the entire sequence before a final deci-

sion is made. Hence, it is suspected that there are sequences correctable

9 _ by standard Viterbi decoding which are not in Ij, and possibly vice versa.

6_ 2-.7 * -*~-
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--. +r.(28)

-F(u, sj)+ r.

in terms of inputs uj and rj and internal state S., where initially uj = 0

for j < 0 and SO = 0.

The states S. of the error trellis, defined in Eqs. (24) and (25b), for)3

an (n, k) CC of memory m are elements of the set of m-tuples of k-vectors as

follows:

= {(_l ..., m) Vk (F)1 ls i m1. (29)

By Eq. (26), a possible state Sj =E(l , .. ,m) in il is equal to the m-tuple

of m consecutive past frames of the input uj. That is,

-_ I
Si Z~ 'm) (.!!j-l' !!j ) (30)

whereuj = 0 for j < 0.

In convolutional codes, the j-th column distance, denoted by di, is de-

fined [6] as the minimum Hamming weight of the first (j + 1) codeword frames,

where the 0-th information frame is non-zero. That is,

min
dj = WH(Y O, ... 9 u) 9 (31)

where WH is the Hamming weight. The column distance, dj, forms a non-

decreasing sequence for (j = 0, 1, ...). For a basic encoder, the limit

of d. is reached in a finite number, J, and equals the free distance, dJ.

Thus,

. d < dfree for j < J
j fe

(32)

• df for j J

. .

-', ', , , -" *' ', , '° ,' '.'_',' '-'' 'v' 
" '* ' ' ' '

" ' ' = " "fr"ee"
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Equation (23) can be expressed in standard sequential circuit form

by defining the state S. of the circuit at frame j to be

Si : (uj... , !Jj-m) (24)

the m-tuple of the previous m values of the k-vector in sequence. Ex-

pressed as a sequential circuit, where initially uj = 0 for j < 0 and

S= 0, the coding trellis in Eq. (23) is given by

wj= F(.j s) (25a)

Sj+l = (lj Sj ) (25b)

where "P" denotes the projection along the first m components of (uij, Sj)=

(uj,' u1j_ , ... , Ujm) as follows:

P (ui, Sj P(!j, uj *,  . = (u* , U ) . (26)

The next state equation of the encoder sequential circuit, associated with

the error trellis, is Eq. (25b) and its output equation is Eq. (25a).

Let the formal power series for z(D) R(D) and e(D) be

oo)

z(D) R(D) E nj Dj  (27a)
, j=0

and

00

e(D) e D (27b)

j=O

Then, by equating coefficients of DJ and using Eqs. (25) and (27), the output

4 label at frame j of the error trellis is given by the n-vector

.. . . ... 
.... . . . . . . . . . .
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Table 1
Representations of GF(2 3)

ak ~a 0 + a, a+ a2 a2

0 0

a

a2  a2

a3  + a2

a4  + a + a2

a5  1+ a

a6  a + a2

a7 1

Y, x Dx

xD D x

Sa

Fig. 1I Rate 1/2, dual-3, convolutional encoder.
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By Fig. 1, the output of the encoder, in terms of input, is

y(D) = [ '(D) Y = x(D) [ + D, 1 + a D]

so that the generating matrix for the dual-3 CC is

G(D) = + D, 1 + a D.

If one applied elementary column operations to G, it is not difficult to

show that

G(D) = l D[1 0] a

is the Smith normal form, Eq. (5). Hence,

B(D) = and
1 a

[a3, a2 + a3 D]

B(D)- -[a2 a2 + a2  J

are the matrices needed in Eq. (6). By Eq. (17b),

- r2 3
a + a DR(D) = B2(D) B2(D) [ [1, a]
a2 + a3 D

[a r2 + a3 D ,a3 +a4D]
-a2 + a2 D , a3 + a3 DJ

is the matrix R(D) needed in the error trellis solution, Eq. (17a), of the

syndrome equation.

It is easy to show from the above generating matrix G(D) that dfree =

- 4 and t = 1. Thus, by Theorem 2, S(q, k, m, t) = 8 and T(q, k, m, tl) = 15.

Thus, the error trellis can be pruned, as shown in Fig. 2. In one constraint

........................................
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length, only % transitions are needed in the error trellis, whereas, for

the standard decoding trellis, 64 transitions are required. This yields a

reduction of 15/84 1 1/4 in the number of transitions needed for error-

trellis decoding below the number required for standard Viterbi hard decod-

ing.

The labels on the pruned error trellis shown in Fig. 2 correspond

to the solution, Eq. (17a), of the syndrome equation for the actual error

sequence equal to the all-zero sequence. That is,

e(D) = [el, e2] = u(D) G =u(D) [1 + D, 1 + a D]
r 1

* = t + Dt, t + a DtJ

are the output of the trellis. For example, at frame time j and state 0, if

u(D) = a4, then

0, a . 0] [ 4  4]

is the label on transition from state 0 to state 1. Such a transition repre-

sents an attempt to "cancel" a single error in the error-trellis equation,

Eq. (17a). If such an error does, in fact, occur at frame j, then no further

errors are allowed to occur at frame j + 1. Thus, a transition to other than

state 0 must be followed by a transition back to. state 0 in the next frame,

as shown in Fig. 2.

Next, suppose a transition to state 04 occurs, i.e., Dt = a4. Then,

since u(D) = 0, the transition from state a4 back to 0 is given by

e(D) [o + a 0 + a . a

The remaining labels to the "pruned" error trellis are obtained in a similar

manner.

r'd' ' ' ' ' ° '" " ' "> ' ' ' ' ' ' "'' ''- '' : ' '" ' ' ' '' ' ' '''''' ' ' ' . '
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To illustrate pruned error-trellis decoding of the dual-3 CC, let the

generating function of message of information sequence be

x(D) = 1 + a D

Then the codeword sequence is, by Eq. (3),

y(D) =x(D) G(D) 1 [ + a5 D + a D2 1 + a2 D2]

Next, let the actual error sequence be

ea(D) =D2, a]

so that

z(D) =y(D) +ea(D) 1 + a5 D+ 2  a5 +a2 D2]

Hence, by Eq. (17b),

a2 +a3 D , a3 +a4 DI

z(D) R(D) =[1 + a
5 D + a5 D2, a

5 + a2 D2] a

a2 + a2 D, a3 + a3D]

=[U3 + a3 D +a 2 D2 +ca3 D~ az a4 D +a 3 D2 + a4 D3

a3~ a4] + [a3, 4] D0+ [a2' a3 2  3 4] D3

The finding of the minimum-weight error path e(D) in terms of 6(D) is

equivalent, by Eq. (17a), to finding the codeword u(D) G(D) which is closest

to z(D) R(D), as given above. Hence, the minimum-weight error path can be

found by applying the Viterbi decoding algorithm to the pruned error

trellis in Fig. 2. To accomplish this, the frames of z(D) R(D) are added to

the outputs u(D) G(D) in the pruned error trellis in Fig. 2, as shown in

Fig. 3.

-. I
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In order to illustrate the Viterbi algorithm as applied to the pruned

error trellis, suppose the decoder has reached frame 4. The output of the

transition from state a3 to state 0 is

coef [u(D) G(D) + z(D) R(D)]

--[a3, a] + [a3, a4] ;[, o]

with Hamming weight 0. A similar calculation for the other seven possible

transitions shows that the transition from a3 to 0 is the only one with

Hamming weight 0. The path segment from a to 0 is chosen since it has

minimum weight.

At frame 5 in Fig. 3, the minimum weight estimate of the D-transform of

the error sequence is

D 0[o, a] + [1, 0] D'

Hence, the estimate _(D) of the message correction factor which achieves (D)

is

u(D) = a3 + a3 D2

Finally, using the above results in Eq. (19) yields, by Table 1,

x =z(D) G- -u(D) =z(D) Bl [ ]" 6(D)

a3 , a2 + a3 D a
"a z(D) ]-6(D) =z(D) - 6(D)

[ l + a5 D + 02 a~ + a D [ + (a3+ a2+D)
a2

=( +a D +a 3 D2+ + a4 D2) +(a 3 +a 3 D')= l +a D,
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the original encoded message.

V. CONCLUDING REMARKS

In this report, pruned error-trellis decoding of systematic and non-

systematic convolutional codes with a delay-free inverse has been developed

in detail, including quantitative formulas for the number of states and

transitions which remain in the pruned error trellis. Currently, the prob-

lem of trellis pruning of other non-systematic CCs is being investigated.

Finally, the reduced hardware requirements for pruned error-trellis decoding

versus standard Viterbi decoding is being studied, and a preliminary archi-

tecture has already been found for the dual-K decoding algorithm developed

in this report.
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